L(χ, s)
where χ is the Dirichlet character with label 3, 2, which is given as
1 –
1/2s + 1/4s – 1/5s + 1/7s – 1/8s
+ 1/10s – 1/11s + …,
with a product over the primes expression as
1/(1 + 1/2s) * 1/(1 + 1/5s) * 1/(1 –
1/7s) * 1/(1 + 1/11s) * …
So when on
dividing each successive number n by 3, if remainder is 0, then χ(n) = 0; if
remainder is 1, χ(n) = 1; if remainder is 2, χ(n) = – 1.
When s is a
positive odd integer the above L-function, results in a simple expression of
the form kπs/√3.
For example
when s = 1,
1 –
1/2 + 1/4 – 1/5 + 1/7 – 1/8 +
1/10 – 1/11 + … = 2/3 * 5/6 *
7/6 * 11/12 * …
= π/(3√3).
And when s = 3,
1 –
1/23 + 1/43 – 1/53 + 1/73 – 1/83
+ 1/103 – 1/113 + …
= 8/9 * 125/126 * 343/342 * 1331/1332 * …
= 4π3/(81√3).
And when s = 5,
1 –
1/25 + 1/45 – 1/55 + 1/75 – 1/85
+ 1/105 – 1/115 + …
= 32/33 * 3125/3126 * 16807/16806 * 161051/161052 * …
= 4π5/(729√3).
An interesting connection can be made here with the Riemann
zeta function (excluding all terms where 3 is a factor).
So when s is a positive odd integer,
(1 –
1/2s + 1/4s – 1/5s + 1/7s – 1/8s
+ …)2/(1 +
1/22s + 1/42s + 1/52s + 1/72s + 1/82s
+ …)
= 1 –
2/2s + 2/4s – 2/5s + 2/7s – 2/8s
+ 4/10s – …,
with a product over the primes expression,
= 1/{1 + 2/(2s +1)} * 1/{1 + 2/(5s +1)}
* 1/{1 – 2/(7s +1)} * 1/{1 – 2/(11s +1)} * …
And this result is a rational number.
So when s = 1,
(1 –
1/2 + 1/4 – 1/5 + 1/7 – 1/8 +
…)2/(1 + 1/22
+ 1/42 + 1/52 + 1/72 + 1/82 +
…)
= 1 –
2/2 + 2/4 – 2/5 + 2/7 – 2/8 +
4/10 – …
with a product over primes expression,
1/{1 + 2/(2 + 1)} * 1/{1 + 2/(5 + 1)} *
1/{1 – 2/(7 + 1)} * 1/{1 – 2/(11 + 1)} * …
= 3/5 * 6/8 * 8/6 * 10/12
* 14/16 * 18/20 * …
= 1/4.
And when s = 3,
(1 –
1/23 + 1/43 – 1/53 + 1/73 – 1/83
+ …)2/(1 +
1/26 + 1/46 + 1/56+ 1/76 + 1/86
+ …)
= 1 –
2/23 + 2/43 – 2/53 + 2/73 – 2/83
+ 4/103 – …,
with a product over primes expression,
1/{1 + 2/(23 +
1)} * 1/{1 + 2/(53 + 1)} *
1/{1 – 2/(73 + 1)} * 1/{1 –
2/(113 + 1)} * …
= 9/11 * 126/128 * 344/342 * 1332/1330 *
= 10/13.
Finally briefly when s = 5
(1 –
1/25 + 1/45 – 1/55 + 1/75 – 1/85
+ …)2/(1 +
1/210 + 1/410+ 1/510+ 1/710 + 1/810
+ …)
= 1 –
2/25 + 2/45 – 2/55 + 2/75 – 2/85
+ 4/105 – …
= 6930/7381.
No comments:
Post a Comment