Tuesday, September 25, 2018

Another Simple L-Function

This is another of the simpler L-functions (degree 1) on the LMFDB site, which I examined with a view to assessing common features with respect to all functions of this class.

So, L(χ, s) where χ is the Dirichlet character with label 7, 6 is given as,

1 + 1/2s – 1/3s + 1/4s – 1/5s – 1/6s + 1/8s + …

So with respect to the Label, 7 refers to the number by which we divide each successive natural number. Then when the remainder is 1, 2, or 4, then χ(n) = 1; when the remainder is 3, 5 or 6 then χ(n) = 1; and when the remainder is zero, χ(n) = 0.

Therefore for each cycle of 7 successive natural numbers, we have 6 terms (with numbers exactly divisible by 7 omitted).

The corresponding product over primes expression (for this Dirichlet sum) is given as

(1 – 1/2s) * (1 + 1/3s) * (1 + 1/5s) * (1 – 1/11s) * …

In this case, when s is a positive odd integer, the value of both expressions = kπs/√7 (where k is a rational number).


So for example when s = 1,

1 + 1/2 – 1/3 + 1/4 – 1/5 – 1/6 + 1/8 + …

 = (1 – 1/2) * (1 + 1/3) * (1 + 1/5) * (1 – 1/11) * …

= π/√7


Then when s = 3,

1 + 1/23 – 1/33 + 1/43 – 1/53 – 1/63 + 1/83 + …

= (1 – 1/23) * (1 + 1/33) * (1 + 1/53) * (1 – 1/113) * …

= √7π3/75


And when s = 5,

1 + 1/25 – 1/35 + 1/45 – 1/55 – 1/65 + 1/85 + …

= (1 – 1/25) * (1 + 1/35) * (1 + 1/55) * (1 – 1/115) * …

= 64π5/(7203√7).


Again as always is the case, the above L-function, where s is a positive integer, it can be related to the Riemann zeta function (excluding those terms where 7 is a factor).

(1 + 1/2s – 1/3s + 1/4s – 1/5s – 1/6s + 1/8s + …)2/(1 + 1/22s + 1/32s + 1/42s + 1/52s – 1/62s + 1/82s + …)

= 1 + 2/2s  – 2/3s  + 2/4s – 2/5s – 4/6s + 2/8s + …

with a product over primes expression,

1/{1 – 2/(2s + 1)} * 1/{1 + 2/(3s + 1)} * 1/{1 + 2/(5s + 1)} * 1/{1 – 2/(11s + 1)} * …

And where s is a positive odd integer, the result is always a rational number.

It is important here to stress that the general relationship holds in all cases, where is a positive odd integer.

However in this case, where s is even, the result is an irrational number.


So for example in the simplest case where s = 1,

(1 + 1/2 – 1/3 + 1/4 – 1/5 – 1/6 + 1/8 + …)2/(1 + 1/22 + 1/32 + 1/42 + 1/52 – 1/62 + 1/82 + …)

= 1 + 2/2  – 2/3  + 2/4 – 2/5 – 4/6 + 2/8 + …,

With a product over primes expression,

1/{1 – 2/(2 + 1)} * 1/{1 + 2/(3 + 1)} * 1/{1 + 2/(5 + 1)} * 1/{1 – 2/(11 + 1)} * …

= {(π/√7)2}/2{(8π2/49)  = 7/8.

Monday, September 17, 2018

A Couple of More L-Functions

I looked at a couple of the other simpler L-functions on the LMFDB site to see if similar sort of patterns as demonstrated with the Dirichlet Beta Function exist.

For example,

L(χ, s) where χ is the Dirichlet character with label 8, 3 is given as,

1 + 1/3s  – 1/5s – 1/7s + 1/9s  + 1/11s  – 1/13s – 1/15s  + …  

 = 1/(1 – 1/3s) * 1/(1 + 1/5s) * 1/(1 + 1/7s) * 1/(1 1/11s) * 1/(1 + 1/13s) * …

So when on dividing each successive number n by 8, if remainder is an even number then χ(n) = 0; if remainder is 1 or 3, χ(n) = 1; if remainder is 5 or 7, χ(n) = 1.     


When s is a positive odd integer, the above L-function has a value of the form kπs/√2

So for example, when s = 1,

1 + 1/3  – 1/5 – 1/7 + 1/9  + 1/11  – 1/13 – 1/15  + …  = √2π/4

It is interesting to contrast this with the Dirichlet Beta Function (when s = 1)

i.e. 1 1/3  + 1/5 – 1/7 + 1/9  1/11  + 1/13 – 1/15  + …  = π/4

Therefore,

(1 + 1/3  – 1/5 – 1/7 + 1/9  + …)/(1 1/3  + 1/5 – 1/7 + 1/9    …) = √2


Then when s = 3,

1 + 1/33  – 1/53 – 1/73 + 1/93  + 1/113  – 1/133 – 1/153  + …  = 3π3/(64√2)

Again the above L-function, where s is a positive odd integer, can be related to the Riemann zeta function (excluding those terms where 2 is a factor).

 (1 + 1/3s  – 1/5s – 1/7s + 1/9s  + …)2/(1 + 1/32s  + 1/52s + 1/72s + 1/92s  + …)

= 1 + 2/3s  – 2/5s – 2/7s + 2/9s  + 2/11s  – 2/13s – 4/15s …,

with a product over primes expression,

1/{1 – 2/(3s + 1)} * 1/{1 + 2/(5s + 1)} * 1/{1 + 2/(7s + 1)} * 1//{1 – 2/(11s + 1)} *
1{1 + 2/(13s + 1)} …

And this will always result in a rational number.

So for example when s = 1,

(1 + 1/3  – 1/5 – 1/7 + 1/9  + …)2/(1 + 1/32  + 1/52 + 1/72 + 1/92  + …)
 
= 1 + 2/3  – 2/5 – 2/7 + 2/9  + 2/11  – 2/13 – 4/15  + …,

with a product over primes expression,

1/{1 – 2/(31 + 1)} * 1/{1 + 2/(51 + 1)} * 1/{1 – 2/(71 + 1)} * 1/{1 + 2/(111 + 1)} *
1/{1 – 2/(131 + 1)} …  

= 4/2 * 6/8 * 8/6 * 12/14 * 14/12 * …

= 1.

So this is in its own way remarkable i.e. that the L-function,

1 + 2/3  – 2/5 – 2/7 + 2/9 + 2/11  – 2/13 – 4/15  + …  = 1 


And in brief when s = 3,

1 + 1/33  – 1/53 – 1/73 + 1/93  + …)2/(1 + 1/36  + 1/56 + 1/76 + 1/96  + …)

= 1 + 2/33  – 2/53 – 2/73 + 2/93  + 2/113  – 2/133 – 4/153

= 135/128.



Then, L(χ, s) where χ is the Dirichlet character with label 8, 5 is given as,

1 1/3s  – 1/5s + 1/7s + 1/9s  1/11s  – 1/13s + 1/15s  + … 

 = 1/(1 + 1/3s) * 1/(1 + 1/5s) * 1/(1 1/7s) * 1/(1 + 1/11s) * 1/(1 + 1/13s) * …

So here when on dividing each successive number n by 8, if remainder is an even number then χ(n) = 0; if remainder is 1 or 7, χ(n) = 1; if remainder is 3 or 5, χ(n) = 1.    

When s is a positive even integer, the above L-function has a value of the form kπs/√2

So for example, when s = 2, the Dirichlet series expansion is

1 1/32  – 1/52 + 1/72 + 1/92 1/112  – 1/132 + 1/152  + … 

= π2/(8√2)


And when s = 4, the Dirichlet series expansion is

1 1/34  – 1/54 + 1/74 + 1/94 1/114  – 1/134 + 1/154 + … 

= 11π4/(768√2)


Again the above L-function, where s is a positive even integer, can be related to the Riemann zeta function (excluding those terms where 2 is a factor).

In this case,

(1 1/3s  – 1/5s + 1/7s + 1/9s  – …)2/(1 + 1/32s  + 1/52s + 1/72s + 1/92s + …)

= 1 2/3s  – 2/5s + 2/7s + 2/9s  – 2/11s – 2/13s + 4/15s +  …,

with a product over primes expression,

1/{1 + 2/(3s + 1)} * 1/{1 + (2/(5s + 1)} * 1/{1 – (2/(7s + 1)} * 1/{1 + 2/(11s + 1)} *
1/{1 + 2/(13s + 1)} * …

Furthermore, the answer will be a rational fraction.

So when for example s = 2,

(1 1/32  – 1/52 + 1/72 + 1/92  – …)2 /(1 + 1/34  + 1/54 + 1/74 + 1/94 + …)

= 1 2/32 – 2/52 + 2/72 + 2/92 – 2/112 – 2/132 + 4/152 +  …,

with a product over primes expression,

1/{1 + 2/(32 + 1)} * 1/{1 + (2/(52 + 1)} * 1/{1 – (2/(72 + 1)} * 1/{1 + 2/(112 + 1)} *
1/{1 + 2/(132 + 1)} * … 

= 10/12 * 26/28 * 50/48 * 122/124 * 170/172 * …

= 3/4.


And when s = 4,

(1 1/34  – 1/54 + 1/74 + 1/94  – …)2 /(1 + 1/38  + 1/58 + 1/78 + 1/98 + …)

= 1 2/34 – 2/54 + 2/74 + 2/94– 2/114 – 2/134 + 4/154 +  …,

with a product over primes expression,

1/{1 + 2/(34 + 1)} * 1/{1 + (2/(54 + 1)} * 1/{1 – (2/(74 + 1)} * 1/{1 + 2/(114 + 1)} *
1/{1 + 2/(134 + 1)} * … 

= 82/84 * 626/628 * 2402/2400 * 14642/14644 * 28562/28564 * …

= 4235/4352.

Saturday, September 15, 2018

A Simple L-Function

Perhaps the simplest L-function at the LMFDB site (besides the Riemann zeta function) is,

L(χ, s) where χ is the Dirichlet character with label 3, 2, which is given as

1 – 1/2s + 1/4s – 1/5s + 1/7s – 1/8s + 1/10s – 1/11s + …,

with a product over the primes expression as

1/(1 + 1/2s) * 1/(1 + 1/5s) * 1/(1 – 1/7s) * 1/(1 + 1/11s) * …

So when on dividing each successive number n by 3, if remainder is 0, then χ(n) = 0; if remainder is 1, χ(n) = 1; if remainder is 2, χ(n) = 1.  

When s is a positive odd integer the above L-function, results in a simple expression of the form kπs/√3.

For example when s = 1,

1 – 1/2 + 1/4 – 1/5 + 1/7 – 1/8 + 1/10 – 1/11 + …  = 2/3 * 5/6 * 7/6 * 11/12 * … 

= π/(3√3).

And when s = 3,

1 – 1/23 + 1/43 – 1/53 + 1/73 – 1/83 + 1/103 – 1/113 + …

= 8/9 * 125/126 * 343/342 * 1331/1332 * …

= 4π3/(81√3).

And when s = 5,

1 – 1/25 + 1/45 – 1/55 + 1/75 – 1/85 + 1/105 – 1/115 + …

= 32/33 * 3125/3126 * 16807/16806 * 161051/161052 * …

= 4π5/(729√3).


An interesting connection can be made here with the Riemann zeta function (excluding all terms where 3 is a factor).

So when s is a positive odd integer,

(1 – 1/2s + 1/4s – 1/5s + 1/7s – 1/8s + …)2/(1 + 1/22s + 1/42s + 1/52s + 1/72s + 1/82s + …)

= 1 – 2/2s + 2/4s – 2/5s + 2/7s – 2/8s + 4/10s – …,

with a product over the primes expression,

= 1/{1 + 2/(2s +1)} * 1/{1 + 2/(5s +1)} * 1/{1 – 2/(7s +1)} * 1/{1 – 2/(11s +1)} * …

And this result is a rational number.

So when s = 1,

(1 – 1/2 + 1/4 – 1/5 + 1/7 – 1/8 + …)2/(1 + 1/22 + 1/42 + 1/52 + 1/72 + 1/82 + …)

= 1 – 2/2 + 2/4 – 2/5 + 2/7 – 2/8 + 4/10 – …

with a product over primes expression,

1/{1 + 2/(2 + 1)} * 1/{1 + 2/(5 + 1)} * 1/{1 – 2/(7 + 1)} * 1/{1 – 2/(11 + 1)} * …

=  3/5 * 6/8 * 8/6 * 10/12 * 14/16 * 18/20 * …

= 1/4.


And when s = 3,

(1 – 1/23 + 1/43 – 1/53 + 1/73 – 1/83 + …)2/(1 + 1/26 + 1/46 + 1/56+ 1/76 + 1/86 + …)

= 1 – 2/23 + 2/43 – 2/53 + 2/73 – 2/83 + 4/103 – …,

with a product over primes expression,

1/{1 + 2/(23  + 1)} * 1/{1 + 2/(53  + 1)} * 1/{1 – 2/(73  + 1)} * 1/{1 – 2/(113  + 1)} * …

= 9/11 * 126/128 * 344/342 * 1332/1330 *

= 10/13.


Finally briefly when s = 5 

(1 – 1/25 + 1/45 – 1/55 + 1/75 – 1/85 + …)2/(1 + 1/210 + 1/410+ 1/510+ 1/710 + 1/810 + …)

= 1 – 2/25 + 2/45 – 2/55 + 2/75 – 2/85 + 4/105 – …  = 6930/7381.