Saturday, September 15, 2018

A Simple L-Function

Perhaps the simplest L-function at the LMFDB site (besides the Riemann zeta function) is,

L(χ, s) where χ is the Dirichlet character with label 3, 2, which is given as

1 – 1/2s + 1/4s – 1/5s + 1/7s – 1/8s + 1/10s – 1/11s + …,

with a product over the primes expression as

1/(1 + 1/2s) * 1/(1 + 1/5s) * 1/(1 – 1/7s) * 1/(1 + 1/11s) * …

So when on dividing each successive number n by 3, if remainder is 0, then χ(n) = 0; if remainder is 1, χ(n) = 1; if remainder is 2, χ(n) = 1.  

When s is a positive odd integer the above L-function, results in a simple expression of the form kπs/√3.

For example when s = 1,

1 – 1/2 + 1/4 – 1/5 + 1/7 – 1/8 + 1/10 – 1/11 + …  = 2/3 * 5/6 * 7/6 * 11/12 * … 

= π/(3√3).

And when s = 3,

1 – 1/23 + 1/43 – 1/53 + 1/73 – 1/83 + 1/103 – 1/113 + …

= 8/9 * 125/126 * 343/342 * 1331/1332 * …

= 4π3/(81√3).

And when s = 5,

1 – 1/25 + 1/45 – 1/55 + 1/75 – 1/85 + 1/105 – 1/115 + …

= 32/33 * 3125/3126 * 16807/16806 * 161051/161052 * …

= 4π5/(729√3).


An interesting connection can be made here with the Riemann zeta function (excluding all terms where 3 is a factor).

So when s is a positive odd integer,

(1 – 1/2s + 1/4s – 1/5s + 1/7s – 1/8s + …)2/(1 + 1/22s + 1/42s + 1/52s + 1/72s + 1/82s + …)

= 1 – 2/2s + 2/4s – 2/5s + 2/7s – 2/8s + 4/10s – …,

with a product over the primes expression,

= 1/{1 + 2/(2s +1)} * 1/{1 + 2/(5s +1)} * 1/{1 – 2/(7s +1)} * 1/{1 – 2/(11s +1)} * …

And this result is a rational number.

So when s = 1,

(1 – 1/2 + 1/4 – 1/5 + 1/7 – 1/8 + …)2/(1 + 1/22 + 1/42 + 1/52 + 1/72 + 1/82 + …)

= 1 – 2/2 + 2/4 – 2/5 + 2/7 – 2/8 + 4/10 – …

with a product over primes expression,

1/{1 + 2/(2 + 1)} * 1/{1 + 2/(5 + 1)} * 1/{1 – 2/(7 + 1)} * 1/{1 – 2/(11 + 1)} * …

=  3/5 * 6/8 * 8/6 * 10/12 * 14/16 * 18/20 * …

= 1/4.


And when s = 3,

(1 – 1/23 + 1/43 – 1/53 + 1/73 – 1/83 + …)2/(1 + 1/26 + 1/46 + 1/56+ 1/76 + 1/86 + …)

= 1 – 2/23 + 2/43 – 2/53 + 2/73 – 2/83 + 4/103 – …,

with a product over primes expression,

1/{1 + 2/(23  + 1)} * 1/{1 + 2/(53  + 1)} * 1/{1 – 2/(73  + 1)} * 1/{1 – 2/(113  + 1)} * …

= 9/11 * 126/128 * 344/342 * 1332/1330 *

= 10/13.


Finally briefly when s = 5 

(1 – 1/25 + 1/45 – 1/55 + 1/75 – 1/85 + …)2/(1 + 1/210 + 1/410+ 1/510+ 1/710 + 1/810 + …)

= 1 – 2/25 + 2/45 – 2/55 + 2/75 – 2/85 + 4/105 – …  = 6930/7381. 

No comments:

Post a Comment